Course Code	CHE401M3		
Course Title	Advanced Coordination and Organometallic Chemistry		
Credit Value	03		
Hourly	Theory	Practical	Independent Learning
Breakdown	45	-	105
Objective/s	• Discuss the bonding and electronic spectra of coordination complexes		
	• Provide the concepts and applications of magneto chemistry		
	• Describe the principles of organometallic chemistry		
	• Illustrate reaction mechanisms of reactions in coordination compounds		
Intended Learning	• Interpret the electronic spectra in transition metal complexes		
Outcomes	• Construct the energy level diagram of metal ligand complexes		
	• Evaluate the magnetic moments of the coordination compounds		
	• Elaborate the concepts of σ and π ligands in organometallic chemistry		
	• Identify the appropriate organometallic catalysts in inorganic synthesis		
	• Determine the reaction mechanisms in coordination complexes		
	Discuss photochemical reactions in coordination complexes		
Course Content	Advanced Coordination Chemistry		
	• Review of coordination chemistry, ligand field theory, ligand field		
	stabilization energy, Jahn-Teller effect, spectrochemical series,		
	Nephelauxetic series, angular overlap method		
	• Quantum numbers of multi electron atoms, terms, microstates of		
	configuration, coupling of spin angular momentum, ground state terms		
	symbol for transit	ion metal ions, selection r	rules for electronic transition,
	correlation diagra	m, Orgal diagram for d^1 ·	-d ⁹ complexes, interpretation
	of spectra of tran	nsition metal complexes	using Orgal diagrams and
	Tanabe–Sugano diagrams, applications of Tanabe–Sugano diagrams		
	• Charge transfer spectra: ligand to metal charge transfer spectra, metal to		
	ligand charge transfer spectra		

Reaction Mechanisms and Photochemistry

- Types of reactions, inert and liable complexes, classification of reaction mechanism, rate laws and interpretation, experimental investigation of mechanism, factors affect the rate of the reaction
- Ligand substitution in square planar and octahedral complexes, acid and base hydrolysis, stereochemical change, isomerization reaction, oxidative-addition, reductive-elimination, oxidation reduction reaction: classification, theory and mechanism.
- Prompt and delayed reactions quantum yield, photochemical reaction of Co(III), Rh(III), Ru(II) and Cr(III) complexes

Magnetochemistry

- Review of magneto chemistry, classification of magnetic substances, magnetic susceptibility, measurement of magnetic susceptibility, corrected magnetic susceptibility, paramagnetism,
- Curie's law, Curie-Weiss law, trend of paramagnetic behaviour with energy separation, quenching of orbital contribution, spin-orbit coupling, temperature independent paramagnetism, magnetic properties of lanthanide and first transition series elements
- Applications of paramagnetic behavior, diamagnetism, ferromagnetism, antiferromagnetism.

Advanced organometallic Chemistry

- Review of organometallic chemistry, preparation and reactions of organometallic compounds transition metals: σ donor ligands, σ donor/ π accepter ligands, σ, π- donor/ π accepter ligands,
- Organometallic chemistry of Lanthanoids and Actinoids
- Organometallic Catalyst in synthesis.

Teaching and	Lectures, tutorial discussion, small group assignment and home-work		
Learning Methods	assignments, e-learning, online learning		
/ Activities			
Evaluation/Assess	In course assessment	End of course examination	
ment Strategy	30%	70%	
Recommended	• Overton, T. L., Rourke, J. P., Weller, M. T., and Armstrong, F. A.,		
References	"Inorganic Chemistry", 7 th Edition Oxford University Press, 2018.		
	• Miessler, G., Fischer, P. J., Tarr, D. A., "Inorganic Chemistry", 5th Edition		
	Pearson Education, 2014.		
	• Atkins, P., Rourke, T. O. J., Weller, M. and Armstrong, F., "Inorganic		
	Chemistry", 5 th Edition, Oxford University Press, 2010.		
	• James E. House, "Inorganic Chemistry", 1st Edition, Elsevier, 2008.		
	• Albert Cotton, F., Geoffrey Wilkinson., Carlos A. Murillo., Manfred		
	Bochmann., "Advanced Inorganic Chemistry", 6th edition, Wiley-Inter		
	science, 1999.		
	• Lee, J. D., "Concise of Inorganic chemistry", 5 th Edition, Blackwell		
	Science Press, 1999.		
	• Jordan R. B., "Reaction mechanisms of inorganic and organometallic		
	systems", 3 rd Edition Oxford University Press, 2007.		