Course Code	CHE406M3		
Course Title	Advanced topics in Thermodynamics, Surface Chemistry and Macromolecules and Aggregates		
Credit Value	03		
Hourly Breakdown	Theory	Independent Learning	
	45	105	
Objective/s	 Describe a partial molar property and determination of the properties of mixtures. Discuss the concepts of fugacity to the Van der Waals gases Explain the special nature and properties of solid surfaces and their specific interaction with environment Provide the factors that contribute to the properties of macromolecules Discuss the aggregation of particles by self-assembly 		
Intended Learning Outcomes	 Discuss the aggregation of particles by self-assembly Determine thermodynamic properties of a given system Solve problems related to single and multi-phase chemical systems Describe the surface orientations Discuss the electronic structure of solid surfaces Distinguish categories of adsorption of solid surfaces Describe over layer structures Apply the surface science techniques to characterize solid surfaces and the adsorption of molecules at surfaces Explain mechanisms and kinetics involved with different types of polymerization Identify the forces responsible for self-assembly 		
Course Contents	 Identify the forces responsible for self-assembly Advanced Thermodynamics Brief resume of basic concepts in thermodynamic principles and laws: zeroth, first, second and third law of thermodynamics. Thermodynamic relationships for systems in equilibria: Gibbs-Duhem relationship, Gibbs-Helmoltz relationship, Maxwell relationship, thermodynamic equation of states, specific heat capacities and their relationship, Joule-Thomson coefficient. Partial molar quantities and its physical significance: partial molar free energy and its variation with temperature and pressure, Gibbs free energy and entropy of mixing of ideal gases, partial molar volumes, method of determination of partial molar volumes Phase transitions: phase equilibrium, phase diagrams of pure substances, thermodynamic description of phase transitions and Clapeyron-Clausius equation Fugacity and activity: variation with temperature and pressure, graphical method for the determination of 		

		real gas and Van der Waals gases, gas mixtures, Duhem-Margules'	
	Advanced Surface Chemistry		
	 surfaces, surface free essurface Electronic Structure model, work function, Adsorption on Solid function change chemisorption, pot chemisorption, work chemisorption, covale between adsorbed sp reconstruction Crystallographic desce Matrix notation, Wood Surface Science Techr and diffraction Heterogeneous catalys metals, selectivity, ca geometric and electron Kinetic models for Hinshelwood mechani Macromolecules and Aggres Molar mass: Types determination of molar Polymerization: Synth structure and propertiaddition, cationic, anior Self-assembly: Collogian 	Surfaces: Physisorption, work induced by physisorption, ential energy profiles for function changes induced by ent bonding, lateral interactions ecies, adsorbate-induced surface cription of overlayer structure: l's Notation hiques: Spectroscopy, microscopy sis: Trends in catalytic reactivity of atalytic promoters and poisons, nic factors surface reactions: Langmuir- sm, Eley - Rideal mechanism gates of molar mass, methods of mass, degree of polymerization hesis, characterization, kinetics, es of Step growth, free radical hic and co-polymerization	
Teaching learning Methods/Activities	Lectures, tutorial discussion, small group assignment, home- work assignments, e-learning, online learning		
Evaluation/Assessment	In-course Assessment	End-of-course Examination	
Strategy	30 %	70 %	

Recommended	• Kapoor, K. L., A "Textbook of Physical Chemistry:
References	 Kaptori, K. E., A Textbook of Physical Chemistry: Thermodynamics and Chemical Equilibrium", 6th Edition, McGraw Hill Education India, 2019. Price, G., "Thermodynamics of Chemical Processes", 2nd Edition Oxford University Press, 2019. Atkins, P., Paula, J. D., and Keeler, J., "Physical Chemistry", 11th Edition, Oxford University Press, 2018. Smith, E. B., "Basic Chemical Thermodynamics", 6th Edition, Imperial College Press, 2013. Klotz, I. M., "Chemical Thermodynamics", 7th Edition, Wiley-Inter science, 2010. Sun, S. F., "Physical Chemistry of Macromolecules", 2nd edition, John Wiley & Sons, 2004. Laurence, A. B., "Physical Properties of Macromolecules", 1st edition, John Wiley & Sons, 2011. Gary Attard, and Colin Barnes, "Surfaces" 1st Edition, 0xford University Press, 1998. Kurt W., Kolasinki, "Surface Science: Foundations of Catalysis and Nanoscience"4th Edition, Wiley, 2020.